译码 ID级 设计
提到译码级,那就得是译码器啊。纯组合逻辑,包你写到爽。
译码级还有什么?立即数移位也需要放在ID级,以减轻EX级的压力。
指令译码器为组合逻辑模块 。我们需要哪些信号?
首先要把31位的指令分类:是RIBJSU的哪一种?之后,要根据分类,将寄存器地址拆分出来,准备送进同一级的寄存器堆来读取数据;要提取指令的funct3和funct7,以便在EX级告诉ALU“长的像的指令如何区分”;要根据指令类型,区分跳转类型和读取/写入类型,给后面的流水级进行处理;还要生成对应位的寄存器读信号,和分支指令判断信号,为后面处理数据冒险准备……要干的事情真不少。
一步一步全写上即可。推荐使用宏定义,大幅度提升可读性。
在模块内使用``ifdef DEBUG`配合上ASCII字符进行Debug是另一个小技巧。在综合时取消宏定义即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 `include "include /defines.svh" module Decoder ( input logic [31 :0 ] instr, output logic [ 4 :0 ] alu_op, output logic is_auipc, output logic alu_src, output logic dram_we, output logic rf_we, output logic [ 1 :0 ] wd_sel, output logic is_branch_instr, output logic [ 2 :0 ] branch_type, output logic [ 1 :0 ] jump_type, output logic [ 3 :0 ] sl_type, output logic rs1_used, output logic rs2_used ); logic [6 :0 ] opcode; logic [2 :0 ] funct3; logic [6 :0 ] funct7; always_comb begin opcode = instr[6 :0 ]; funct3 = instr[14 :12 ]; funct7 = instr[31 :25 ]; end always_comb begin case (opcode) `OPCODE_JAL: jump_type = `JUMP_JAL; `OPCODE_JALR: jump_type = `JUMP_JALR; default : jump_type = `JUMP_NOP; endcase end assign rs1_used = ~((opcode == `OPCODE_LUI) || (opcode == `OPCODE_AUIPC) || (opcode == `OPCODE_JAL) || (opcode == `OPCODE_ZERO)); assign rs2_used = (opcode == `OPCODE_RTYPE) || (opcode == `OPCODE_BTYPE) || (opcode == `OPCODE_STYPE); assign is_auipc = (opcode == `OPCODE_AUIPC); always_comb begin : alu_src_selection unique case (opcode) `OPCODE_RTYPE, `OPCODE_BTYPE: alu_src = `ALUSRC_RS2; `OPCODE_ITYPE, `OPCODE_LTYPE, `OPCODE_STYPE, `OPCODE_AUIPC, `OPCODE_JALR: alu_src = `ALUSRC_IMM; default : alu_src = `ALUSRC_RS2; endcase end always_comb begin : wb_source_selection unique case (opcode) `OPCODE_RTYPE, `OPCODE_ITYPE: wd_sel = `WD_SEL_FROM_ALU; `OPCODE_LTYPE: wd_sel = `WD_SEL_FROM_DRAM; `OPCODE_JAL, `OPCODE_JALR: wd_sel = `WD_SEL_FROM_PC4; `OPCODE_LUI, `OPCODE_AUIPC: wd_sel = `WD_SEL_FROM_IEXT; default : wd_sel = 2'b0 ; endcase end always_comb begin : rf_write_enable unique case (opcode) `OPCODE_RTYPE, `OPCODE_ITYPE, `OPCODE_LTYPE, `OPCODE_LUI, `OPCODE_AUIPC, `OPCODE_JAL, `OPCODE_JALR: rf_we = 1'b1 ; `OPCODE_BTYPE, `OPCODE_STYPE: rf_we = 1'b0 ; default : rf_we = 1'b0 ; endcase end assign dram_we = (opcode == `OPCODE_STYPE) ? 1'b1 : 1'b0 ; always_comb begin : ALUOp_selection alu_op = `ALU_NOP; branch_type = `BRANCH_NOP; is_branch_instr = 1'b0 ; unique case (opcode) `OPCODE_RTYPE, `OPCODE_ITYPE: begin unique case (funct3) `FUNCT3_ADD_SUB_MUL: case (1'b1 ) (opcode == `OPCODE_RTYPE) && (funct7 == `FUNCT7_SUB): alu_op = `ALU_SUB; (opcode == `OPCODE_RTYPE): alu_op = `ALU_ADD; default : alu_op = `ALU_ADD; endcase `FUNCT3_SLL_MULH: alu_op = `ALU_SLL; `FUNCT3_SLT_MULHSU: alu_op = `ALU_SLT; `FUNCT3_SLTU_MULHU: alu_op = `ALU_SLTU; `FUNCT3_XOR_DIV: alu_op = `ALU_XOR; `FUNCT3_SRL_SRA_DIVU: alu_op = (funct7 == `FUNCT7_SRA) ? `ALU_SRA : `ALU_SRL; `FUNCT3_OR_REM: alu_op = `ALU_OR; `FUNCT3_AND_REMU: alu_op = `ALU_AND; default : alu_op = `ALU_NOP; endcase end `OPCODE_BTYPE: begin alu_op = (funct3 == `FUNCT3_BLTU || funct3 == `FUNCT3_BGEU) ? `ALU_SLTU : `ALU_SUB; unique case (funct3) `FUNCT3_BEQ: branch_type = `BRANCH_BEQ; `FUNCT3_BNE: branch_type = `BRANCH_BNE; `FUNCT3_BLT: branch_type = `BRANCH_BLT; `FUNCT3_BGE: branch_type = `BRANCH_BGE; `FUNCT3_BLTU: branch_type = `BRANCH_BLTU; `FUNCT3_BGEU: branch_type = `BRANCH_BGEU; default : branch_type = `BRANCH_NOP; endcase is_branch_instr = 1'b1 ; end `OPCODE_JAL, `OPCODE_LUI: alu_op = `ALU_RIGHT; `OPCODE_JALR, `OPCODE_AUIPC: alu_op = `ALU_ADD; `OPCODE_LTYPE: begin unique case (funct3) `FUNCT3_LB: alu_op = `ALU_LB; `FUNCT3_LBU: alu_op = `ALU_LBU; `FUNCT3_LH: alu_op = `ALU_LH; `FUNCT3_LHU: alu_op = `ALU_LHU; `FUNCT3_LW: alu_op = `ALU_LW; default : alu_op = `ALU_NOP; endcase end `OPCODE_STYPE: begin unique case (funct3) `FUNCT3_SB: alu_op = `ALU_SB; `FUNCT3_SH: alu_op = `ALU_SH; `FUNCT3_SW: alu_op = `ALU_SW; default : alu_op = `ALU_NOP; endcase end default : alu_op = `ALU_NOP; endcase end always_comb begin : sl_selection unique case (opcode) `OPCODE_LTYPE: begin case (funct3) `FUNCT3_LB: sl_type = `MEM_LB; `FUNCT3_LBU: sl_type = `MEM_LBU; `FUNCT3_LH: sl_type = `MEM_LH; `FUNCT3_LHU: sl_type = `MEM_LHU; `FUNCT3_LW: sl_type = `MEM_LW; default : sl_type = `MEM_NOP; endcase end `OPCODE_STYPE:begin case (funct3) `FUNCT3_SB: sl_type = `MEM_SB; `FUNCT3_SH: sl_type = `MEM_SH; `FUNCT3_SW: sl_type = `MEM_SW; default : sl_type = `MEM_NOP; endcase end default : sl_type = `MEM_NOP; endcase end `ifdef DEBUG logic [256 -1 :0 ] instr_ascii; logic [256 -1 :0 ] branch_type_ascii; always_comb begin : ascii_output unique case (branch_type) `BRANCH_NOP: branch_type_ascii = "BRANCH_NOP" ; `BRANCH_BEQ: branch_type_ascii = "BRANCH_BEQ" ; `BRANCH_BNE: branch_type_ascii = "BRANCH_BNE" ; `BRANCH_BLT: branch_type_ascii = "BRANCH_BLT" ; `BRANCH_BGE: branch_type_ascii = "BRANCH_BGE" ; `BRANCH_BLTU: branch_type_ascii = "BRANCH_BLTU" ; `BRANCH_BGEU: branch_type_ascii = "BRANCH_BGEU" ; `BRANCH_JALR: branch_type_ascii = "BRANCH_JALR" ; default : branch_type_ascii = "BRANCH_UNKNOWN" ; endcase unique case (opcode) `OPCODE_LUI: instr_ascii = "LUI" ; `OPCODE_AUIPC: instr_ascii = "AUIPC" ; `OPCODE_JAL: instr_ascii = "JAL" ; `OPCODE_JALR: instr_ascii = "JALR" ; `OPCODE_BTYPE: begin unique case (funct3) `FUNCT3_BEQ: instr_ascii = "BEQ" ; `FUNCT3_BNE: instr_ascii = "BNE" ; `FUNCT3_BLT: instr_ascii = "BLT" ; `FUNCT3_BGE: instr_ascii = "BGE" ; `FUNCT3_BLTU: instr_ascii = "BLTU" ; `FUNCT3_BGEU: instr_ascii = "BGEU" ; default : instr_ascii = "B_UNKNOWN" ; endcase end `OPCODE_LTYPE: begin unique case (funct3) `FUNCT3_LB: instr_ascii = "LB" ; `FUNCT3_LH: instr_ascii = "LH" ; `FUNCT3_LW: instr_ascii = "LW" ; `FUNCT3_LBU: instr_ascii = "LBU" ; `FUNCT3_LHU: instr_ascii = "LHU" ; default : instr_ascii = "L_UNKNOWN" ; endcase end `OPCODE_STYPE: begin unique case (funct3) `FUNCT3_SB: instr_ascii = "SB" ; `FUNCT3_SH: instr_ascii = "SH" ; `FUNCT3_SW: instr_ascii = "SW" ; default : instr_ascii = "S_UNKNOWN" ; endcase end `OPCODE_ITYPE: begin unique case (funct3) `FUNCT3_ADD_SUB_MUL: instr_ascii = "ADDI" ; `FUNCT3_SLL_MULH: instr_ascii = "SLLI" ; `FUNCT3_SLT_MULHSU: instr_ascii = "SLTI" ; `FUNCT3_SLTU_MULHU: instr_ascii = "SLTIU" ; `FUNCT3_XOR_DIV: instr_ascii = "XORI" ; `FUNCT3_SRL_SRA_DIVU: instr_ascii = (funct7 == `FUNCT7_SRAI) ? "SRAI" : "SRLI" ; `FUNCT3_OR_REM: instr_ascii = "ORI" ; `FUNCT3_AND_REMU: instr_ascii = "ANDI" ; default : instr_ascii = "I_UNKNOWN" ; endcase end `OPCODE_RTYPE: begin unique case (funct3) `FUNCT3_ADD_SUB_MUL: begin if (funct7 == `FUNCT7_SUB) instr_ascii = "SUB" ; else if (funct7 == `FUNCT7_ADD) instr_ascii = "ADD" ; else instr_ascii = "R_UNKNOWN" ; end `FUNCT3_SLL_MULH: instr_ascii = "SLL" ; `FUNCT3_SLT_MULHSU: instr_ascii = "SLT" ; `FUNCT3_SLTU_MULHU: instr_ascii = "SLTU" ; `FUNCT3_XOR_DIV: instr_ascii = "XOR" ; `FUNCT3_SRL_SRA_DIVU: begin if (funct7 == `FUNCT7_SRA) instr_ascii = "SRA" ; else if (funct7 == `FUNCT7_SRL) instr_ascii = "SRL" ; else instr_ascii = "R_UNKNOWN" ; end `FUNCT3_OR_REM: instr_ascii = "OR" ; `FUNCT3_AND_REMU: instr_ascii = "AND" ; default : instr_ascii = "R_UNKNOWN" ; endcase end default : instr_ascii = "ERROR" ; endcase end `endif endmodule
立即数扩展模块 imm_extener.sv
立即数扩展模块也是组合逻辑模块 。不需要接受译码器传出的信号,而是和译码器并行工作,同样接受32位指令instr后进行分类处理。当然可以写在Decoder.v,但是那样子有点乱。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 `include "include /defines.svh" module imm_extender ( input logic [31 :0 ] instr, output logic [31 :0 ] imm_out ); logic [6 :0 ] opcode; assign opcode = instr[6 :0 ]; always_comb begin : imm_classifier unique case (opcode) `OPCODE_ITYPE, `OPCODE_LTYPE, `OPCODE_JALR: begin imm_out = {{20 {instr[31 ]}}, instr[31 :20 ]}; end `OPCODE_BTYPE: begin imm_out = {{20 {instr[31 ]}}, instr[7 ], instr[30 :25 ], instr[11 :8 ], 1'b0 }; end `OPCODE_JAL: begin imm_out = {{12 {instr[31 ]}}, instr[19 :12 ], instr[20 ], instr[30 :21 ], 1'b0 }; end `OPCODE_STYPE: begin imm_out = {{20 {instr[31 ]}}, instr[31 :25 ], instr[11 :7 ]}; end `OPCODE_AUIPC, `OPCODE_LUI: begin imm_out = {instr[31 :12 ], 12'b0 }; end default : begin imm_out = 32'b0 ; end endcase end endmodule
ID/EX级流水线寄存器 PR_ID_EX.sv
终于,要进入下一阶段了。ID/EX级的流水线寄存器可谓是相当重要,重要性仅次于EX/MEM级,因为这一级中转了各类数据以及地址——还有未来的数据前递入口。
我们要接收译码器传出的各种控制信号,包括ALU的操作数来源is_auipc和alu_src。根据译码器判断,对于S-Type指令,在MEM级还需要写入DRAM,因此还有写使能dram_we,或者是寄存器写使能rf_we。
还有什么?别忘了判断指令存取类型的sl_type,后面需要在MEM级用到。
即使RISC-V不强制要求支持非对齐访存,lb/lh等指令也必须支持!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 `include "include /defines.svh" module PR_ID_EX ( input logic clk, input logic rst_n, input logic flush, input logic [31 :0 ] pc_id_i, input logic [31 :0 ] pc4_id_i, output logic [31 :0 ] pc_ex_o, output logic [31 :0 ] pc4_ex_o, input logic instr_valid_id_i, output logic instr_valid_ex_o, input logic [31 :0 ] rD1_i, output logic [31 :0 ] rD1_o, input logic [31 :0 ] rD2_i, output logic [31 :0 ] rD2_o, input logic [ 4 :0 ] alu_op_id_i, output logic [ 4 :0 ] alu_op_ex_o, input logic is_auipc_id_i, output logic is_auipc_ex_o, input logic alu_src2_sel_id_i, output logic alu_src2_sel_ex_o, input logic dram_we_id_i, output logic dram_we_ex_o, input logic rf_we_id_i, output logic rf_we_ex_o, input logic [ 1 :0 ] wd_sel_id_i, output logic [ 1 :0 ] wd_sel_ex_o, input logic [ 4 :0 ] wr_id_i, output logic [ 4 :0 ] wr_ex_o, input logic is_branch_instr_id_i, output logic is_branch_instr_ex_o, input logic [ 2 :0 ] branch_type_id_i, output logic [ 2 :0 ] branch_type_ex_o, input logic [ 1 :0 ] jump_type_id_i, output logic [ 1 :0 ] jump_type_ex_o, input logic [ 3 :0 ] sl_type_id_i, output logic [ 3 :0 ] sl_type_ex_o, input logic [31 :0 ] imm_id_i, output logic [31 :0 ] imm_ex_o, input logic [31 :0 ] pc_jump_id_i, output logic [31 :0 ] pc_jump_ex_o, input fwd_rD1e_EX, input fwd_rD2e_EX, input logic [31 :0 ] fwd_rD1_EX, input logic [31 :0 ] fwd_rD2_EX ); logic [31 :0 ] rD1_forwarded, rD2_forwarded; always_comb begin rD1_forwarded = fwd_rD1e_EX ? fwd_rD1_EX : rD1_i; rD2_forwarded = fwd_rD2e_EX ? fwd_rD2_EX : rD2_i; end always_ff @(posedge clk or negedge rst_n) begin if (!rst_n) begin rD1_o <= 32'b0 ; rD2_o <= 32'b0 ; end else begin rD1_o <= rD1_forwarded; rD2_o <= rD2_forwarded; end end always_ff @(posedge clk or negedge rst_n) begin if (!rst_n) begin is_branch_instr_ex_o <= 1'b0 ; branch_type_ex_o <= 3'b0 ; jump_type_ex_o <= 2'b0 ; end else if (flush) begin is_branch_instr_ex_o <= 1'b0 ; branch_type_ex_o <= 3'b0 ; jump_type_ex_o <= 2'b0 ; end else begin is_branch_instr_ex_o <= is_branch_instr_id_i; branch_type_ex_o <= branch_type_id_i; jump_type_ex_o <= jump_type_id_i; end end always_ff @(posedge clk or negedge rst_n) begin if (!rst_n) begin alu_op_ex_o <= 4'b0 ; is_auipc_ex_o <= 1'b0 ; alu_src2_sel_ex_o <= 1'b0 ; dram_we_ex_o <= 1'b0 ; sl_type_ex_o <= 3'b0 ; imm_ex_o <= 32'b0 ; end else if (flush) begin alu_op_ex_o <= 4'b0 ; is_auipc_ex_o <= 1'b0 ; alu_src2_sel_ex_o <= 1'b0 ; dram_we_ex_o <= 1'b0 ; sl_type_ex_o <= sl_type_id_i; imm_ex_o <= 32'b0 ; end else begin alu_op_ex_o <= alu_op_id_i; is_auipc_ex_o <= is_auipc_id_i; alu_src2_sel_ex_o <= alu_src2_sel_id_i; dram_we_ex_o <= dram_we_id_i; sl_type_ex_o <= sl_type_id_i; imm_ex_o <= imm_id_i; end end always_ff @(posedge clk or negedge rst_n) begin if (!rst_n) begin pc_ex_o <= 32'b0 ; pc4_ex_o <= 32'b0 ; instr_valid_ex_o <= 1'b0 ; rf_we_ex_o <= 1'b0 ; wd_sel_ex_o <= 2'b0 ; pc_jump_ex_o <= 32'b0 ; end else if (flush && pc_id_i) begin pc_ex_o <= 32'b0 ; pc4_ex_o <= 32'b0 ; instr_valid_ex_o <= 1'b0 ; rf_we_ex_o <= 1'b0 ; wd_sel_ex_o <= 2'b0 ; pc_jump_ex_o <= 32'b0 ; end else begin pc_ex_o <= pc_id_i; pc4_ex_o <= pc4_id_i; instr_valid_ex_o <= instr_valid_id_i; rf_we_ex_o <= rf_we_id_i; wd_sel_ex_o <= wd_sel_id_i; pc_jump_ex_o <= pc_jump_id_i; end end always_ff @(posedge clk or negedge rst_n) begin if (!rst_n) begin wr_ex_o <= 5'b0 ; end else if (flush) begin wr_ex_o <= 5'b0 ; end else begin wr_ex_o <= wr_id_i; end end endmodule